دوره 2، شماره 4 - ( 7-1396 )                   جلد 2 شماره 4 صفحات 279-289 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramezani A. Gene-Nutrient Interactions in Cancer; a Systematic Review. hrjbaq. 2017; 2 (4) :279-289
URL: http://hrjbaq.ir/article-1-66-fa.html
رمضانی آتنا. اثرات متقابل ژن- ماده مغذی در بروز سرطان؛ یک مطالعه مروری سیستماتیک. مجله پژوهش سلامت. 1396; 2 (4) :279-289

URL: http://hrjbaq.ir/article-1-66-fa.html


دانشکده بهداشت و مرکز تحقیقات دیابت، دانشگاه علوم پزشکی مازندران، ساری، ایران ، (ramezaniatena@yahoo.com)
چکیده:   (1334 مشاهده)

پیشرفت در بیولوژی مولکولی در دهه‌های گذشته به درک عمیق عملکرد ژن‌ها در ایجاد بیماری‌ها کمک کرده است. محیط و عوامل تغذیه‌ای با زمینه ژنتیکی فرد در ایجاد بیماری‌های مختلف از جمله سرطان، بیماری قلبی‌عروقی و بیماری های دژنراتیو عصبی تأثیر متقابل دارند. با وجود این مکانیسم‌های دقیق تعامل ژن- ماده‌ مغذی، هنوز به طورکامل روشن نشده است. شناخت اثرات متقابل ژن- ماده مغذی نیازمند ابزارهایی برای مطالعه اثرات مواد غذایی بر بیان ژن‌ها (نوتریژنومیکس) و خصوصیات فنوتیپی است. ﺑﻪ ﻣﻨﻈﻮر دﺳﺘﻴﺎﺑﻲ ﺑﻪ ﻣﻄﺎﻟﻌﺎت ﻣﻮﺟﻮد در رابطه با اثرات متقابل ژن-ماده مغذی در سرطان و اﻧﺠﺎم ﻳﻚ ﺑﺮرﺳﻲ ﻣﺮوری، در ﺑﺎﻧﻚﻫﺎی اﻃﻼﻋﺎتی معتبر پابمد، ساینس دایرکت، مدلاین و اسکوپوس در بازه‌زمانی سال‌های 2015-2000 انجام شد. نتایج بررسی‌ها نشان می‌دهد که بسیاری از ریزمغذی‌ها و ویتامین‌ها در مکانیسم‌های تنظیم متابولیسم DNA دارای اهمیت هستند.‌ درک الگوی متیلاسیون DNA از طریق تأثیر متقابل با مواد‌مغذی نه تنها به بیان پاتوفیزیولوژی بیماری می‌پردازد، بلکه برای شناسایی افراد در معرض خطر با هدف انجام مداخلات تغذیه‌ای و بهبود سلامت آنان نیز مورد استفاده قرار می‌گیرد.
واژه‌های کلیدی: ماده مغذی، ژن، تأثیر متقابل، سرطان
متن کامل [PDF 797 kb]   (610 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: عمومى
دریافت: ۱۳۹۵/۶/۱ | ویرایش نهایی: ۱۳۹۶/۹/۲۵ | پذیرش: ۱۳۹۶/۶/۶ | انتشار: ۱۳۹۶/۸/۳ | انتشار الکترونیک: ۱۳۹۶/۸/۳

فهرست منابع
1. Giovannucci Edward. Nutrient and Gene Interactions in Cancer,Chapter 1. Edited by: Sang-Woon Choi, Simonetta Friso. In: Nutrient-gene interactions in cancer. CRC Press, Taylor & Francis Group. 2006; 1-17.
2. Friso S, Choi S.W. Gene-Nutrient Interactions in One-Carbon Metabolism. Current Drug Metabolism. 2005; 6 (1): 37-46. [DOI:10.2174/1389200052997339]
3. Wai-Nang P. Lee and Vay Liang W.Go. Nutrient-Gene Interaction: Tracer-Based Metabolomics. J. Nutr. 2005; 135: 3027S–32S, .
4. Ramezani A, Koohdani F, et al. Effects of administration of omega-3 fatty acids with or without vitamin E supplementation on adiponectin gene expression in PBMCs and serum adiponectin and adipocyte fatty acid-binding protein levels in male patients with CAD. growth. 2015;8:11-3. [DOI:10.5152/akd.2015.5849]
5. Ramezani A, Djazayeri A, et al. omega-3 fatty acids/vitamin e behave synergistically on adiponectin receptor-1 and adiponectin receptor-2 gene expressions in peripheral blood mononuclear cell of coronary artery disease patients. Current Topics in Nutraceutical Research. 2015;13(2):23-32.
6. Yousefinejad A, Siassi F, et al. Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome. Iranian journal of public health. 2015;44(10):1339-1347.
7. Ramezani, A. Djalali M. Effects of administration of omega-3 fatty acids with or without vitamin E supplementation on adiponectin gene expression in PBMCs and serum adiponectin and adipocyte fatty acid-binding protein levels in male patients with CAD. growth, 2015; 8: 11-13. [DOI:10.5152/akd.2015.5849]
8. Ramezani, A., et al., omega-3 fatty acids/vitamin e behave synergistically on adiponectin receptor-1 and adiponectin receptor-2 gene expressions in peripheral blood mononuclear cell of coronary artery disease patients. Current Topics In Nutraceutical Research, 2015; 13(2):23-32.
9. Cheng TYD, Makar KW, et al. Folate‐mediated one‐carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women\'s Health Initiative Observational Study. Cancer. 2015;121(20):3684-3691. [DOI:10.1002/cncr.29465]
10. Liu AY, Scherer D, et al. Gene‐diet‐interactions in folate‐mediated one‐carbon metabolism modify colon cancer risk. Molecular nutrition & food research. 2013;57(4):721-734. [DOI:10.1002/mnfr.201200180]
11. Gong Z, Ambrosone CB, et al. Associations of dietary folate, Vitamins B6 and B12 and methionine intake with risk of breast cancer among African American and European American women. International journal of cancer. 2014;134(6):1422-1435. [DOI:10.1002/ijc.28466]
12. Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015;7(2):922-947. [DOI:10.3390/nu7020922]
13. Yousefinejad, A., et al., Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome. Iranian journal of public health, 2015; 44(10): 1339-1347.
14. He J, Pu Y, et al. Association between dietary intake of folate and MTHFR and MTR genotype with risk of breast cancer. Genet Mol Res. 2014;13(4):8925-8931. [DOI:10.4238/2014.October.31.7]
15. Weiwei Z, Liping C, et al. Association between dietary intake of folate, vitamin B6, B12 & MTHFR, MTR Genotype and breast cancer risk. Pakistan journal of medical sciences. 2014;30(1):106-110.
16. Melak D, Ferreccio C, et al. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile. Toxicology and applied pharmacology. 2014;274(2):225-231. [DOI:10.1016/j.taap.2013.11.014]
17. Vieira MLdS, Fonseca FLA, et al. Supplementation with selenium can influence nausea, fatigue, physical, renal, and liver function of children and adolescents with cancer. Journal of medicinal food. 2015;18(1):109-117. [DOI:10.1089/jmf.2014.0030]
18. Takata Y, Shrubsole MJ, et al. Plasma folate concentrations and colorectal cancer risk: A case‐control study nested within the Shanghai Men\'s Health Study. International journal of cancer. 2014;135(9):2191-2198. [DOI:10.1002/ijc.28871]
19. Simonetta Friso and Sang-Woon Choi . Gene-Nutrient Interactions and DNA Methylation. J. Nutr. 2002; 132:2382S-2387S.
20. Keum N, Giovannucci EL. Folic acid fortification and colorectal cancer risk. American journal of preventive medicine. 2014;46(3):S65-S72. [DOI:10.1016/j.amepre.2013.10.025]
21. Jung AY, van Duijnhoven FJ, et al.| Dietary B vitamin and methionine intake and MTHFR C677T genotype on risk of colorectal tumours in patients with Lynch Syndrome: the GEOLynch Cohort Study. PDF hosted at the Radboud Repository of the Radboud University Nijmegen. 2014:1119-1129.
22. Giovannucci E. Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J Nutr 2004; 134, 2475S–2481S
23. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004; 229(10):988-995. [DOI:10.1177/153537020422901002]
24. Webb PM, Ibiebele TI, et al. Folate and related micronutrients, folate-metabolising genes and risk of ovarian cancer. Eur J Clin Nutr. 2011;65(10):1133-1140. . [DOI:10.1038/ejcn.2011.99]
25. Aune D, Rosenblatt DAN, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. The American journal of clinical nutrition. 2015;101(1):87-117. [DOI:10.3945/ajcn.113.067157]
26. Monteith GR. Prostate cancer cells alter the nature of their calcium influx to promote growth and acquire apoptotic resistance. Cancer Cell. 2014;26(1):1-2. [DOI:10.1016/j.ccr.2014.06.015]
27. Batai K, Murphy AB, et al. Abstract B16: Association of calcium and vitamin D intake and vitamin D receptor genotypes with prostate cancer in multiethnic samples. AACR; 2015;24(10 Suppl): 1158-1538. [DOI:10.1158/1538-7755.DISP14-B16]
28. Cornelia M. Ulrich. Nutrigenetics in Cancer Research - Folate Metabolism and Colorectal Cancer. J. Nutr. 2005; 135: 2698–2702. .
29. Fetahu IS, Höbaus J, et al. Calcium‐sensing receptor silencing in colorectal cancer is associated with promoter hypermethylation and loss of acetylation on histone 3. International journal of cancer. 2014;135(9):2014-2023. [DOI:10.1002/ijc.28856]
30. Hilary J. Powers. Interaction among Folate, Riboflavin, Genotype, and Cancer, with Reference to Colorectal and Cervical Cancer. J. Nutr. 2005; 135: 2960S–2966S.
31. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010; 17(20): 2141–2151. [DOI:10.2174/092986710791299966]
32. Tyagi T, Treas JN, et al. Potentiation of growth inhibition and epigenetic modulation by combination of green tea polyphenol and 5-aza-2′-deoxycytidine in human breast cancer cells. Breast cancer research and treatment. 2015;149(3):655-668. [DOI:10.1007/s10549-015-3295-5]
33. Deb G, Thakur VS, et al. Green tea polyphenol-mediated epigenetic reactivation of TIMP-3 reduces invasiveness and gelatinolytic activity in human breast cancer cells. AACR; 2014;74(19 Suppl): 1158-1538. [DOI:10.1158/1538-7445.AM2014-253]
34. Zhang Y, Wang X, et al. Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation. Biomedicine & Pharmacotherapy. 2015;69:285-290. [DOI:10.1016/j.biopha.2014.12.016]
35. Liu T-P, Lo H-L, et al. S-Adenosyl-L-methionine-competitive inhibitors of the histone methyltransferase EZH2 induce autophagy and enhance drug sensitivity in cancer cells. Anti-cancer drugs. 2015;26(2):139-147. [DOI:10.1097/CAD.0000000000000166]
36. Ham M-S, Lee J-K, et al. S-adenosyl methionine specifically protects the anticancer effect of 5-FU via DNMTs expression in human A549 lung cancer cells. Molecular and clinical oncology. 2013;1(2):373-378. [DOI:10.3892/mco.2012.53]
37. Rowland GW, Schwartz GG, et al. Calcium Intake and Prostate Cancer Among African Americans: Effect Modification by Vitamin D Receptor Calcium Absorption Genotype. J Bone Miner Res. 2012; 27(1): 187–194. [DOI:10.1002/jbmr.505]
38. Farid E. Ahmed. Gene-Gene, Gene-Environment & Multiple Interactions in Colorectal Cancer. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev.2006; 24:1-101. [DOI:10.1080/10590500600614295]
39. Suh J, Herbig A, et al. New perspectives on folate catabolism. Annu Rev Nutr. 2001; 21:255–282. . [DOI:10.1146/annurev.nutr.21.1.255]
40. Shane B, Stokstad E. The interrelationships among folate, vitamin B12, and methionine metabolism. Adv Nutr Res. 1983;5:133–170. [DOI:10.1007/978-1-4613-9937-7_7]
41. Kim Y. Folate and carcinogenesis: evidence, mechanisms, and implications. J Nutr Biochem. 1999;10:66–88. [DOI:10.1016/S0955-2863(98)00074-6]
42. Fang M, Wang Y, et al. Tea polyphenol epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003; 63:7563–7570.
43. Fang M, Chen D, et al. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137:223S–228S. .
44. Pandey M, Shukla S, et al. Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer. 2010;126(11):2520-2533. [DOI:10.1002/ijc.24988]
45. Gao Z, Xu Z, et al. Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells. Anticancer Res. 2009; 29:2025–2030.
46. Kato K, Long N, et al. Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer. 2008; 99:647–654. . [DOI:10.1038/sj.bjc.6604521]
47. Fang M, Chen D, et al. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res. 2005;11:7033–7041. [DOI:10.1158/1078-0432.CCR-05-0406]
48. Xie Q, Bai Q, et al. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells. Genes, Chromosomes and Cancer. 2014;53(5):422-431. [DOI:10.1002/gcc.22154]
49. Xia J, Cheng L, et al. Genistein inhibits cell growth and invasion through regulation of miR-27a in pancreatic cancer cells. Current pharmaceutical design. 2014;20(33):5348-5353. [DOI:10.2174/1381612820666140128215756]
50. Mahmoud AM, Al-alem U, et al. Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation. The Journal of steroid biochemistry and molecular biology. 2015;152:62-75. [DOI:10.1016/j.jsbmb.2015.04.018]
51. Wallenberg M, Misra S, et al. Selenium cytotoxicity in cancer. Basic & clinical pharmacology & toxicology. 2014;114(5):377-386. [DOI:10.1111/bcpt.12207]
52. Giovannucci Edward. Nutrient and Gene Interactions in Cancer,Chapter 1. Edited by: Sang-Woon Choi, Simonetta Friso. In: Nutrient-gene interactions in cancer. CRC Press, Taylor & Francis Group. 2006; 1-17.
53. Friso S, Choi S.W. Gene-Nutrient Interactions in One-Carbon Metabolism. Current Drug Metabolism. 2005; 6 (1): 37-46. [DOI:10.2174/1389200052997339]
54. Wai-Nang P. Lee and Vay Liang W.Go. Nutrient-Gene Interaction: Tracer-Based Metabolomics. J. Nutr. 2005; 135: 3027S–32S, .
55. Ramezani A, Koohdani F, et al. Effects of administration of omega-3 fatty acids with or without vitamin E supplementation on adiponectin gene expression in PBMCs and serum adiponectin and adipocyte fatty acid-binding protein levels in male patients with CAD. growth. 2015;8:11-3. [DOI:10.5152/akd.2015.5849]
56. Ramezani A, Djazayeri A, et al. omega-3 fatty acids/vitamin e behave synergistically on adiponectin receptor-1 and adiponectin receptor-2 gene expressions in peripheral blood mononuclear cell of coronary artery disease patients. Current Topics in Nutraceutical Research. 2015;13(2):23-32.
57. Yousefinejad A, Siassi F, et al. Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome. Iranian journal of public health. 2015;44(10):1339-1347.
58. Ramezani, A. Djalali M. Effects of administration of omega-3 fatty acids with or without vitamin E supplementation on adiponectin gene expression in PBMCs and serum adiponectin and adipocyte fatty acid-binding protein levels in male patients with CAD. growth, 2015; 8: 11-13. [DOI:10.5152/akd.2015.5849]
59. Ramezani, A., et al., omega-3 fatty acids/vitamin e behave synergistically on adiponectin receptor-1 and adiponectin receptor-2 gene expressions in peripheral blood mononuclear cell of coronary artery disease patients. Current Topics In Nutraceutical Research, 2015; 13(2):23-32.
60. Cheng TYD, Makar KW, et al. Folate‐mediated one‐carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women\'s Health Initiative Observational Study. Cancer. 2015;121(20):3684-3691. [DOI:10.1002/cncr.29465]
61. Liu AY, Scherer D, et al. Gene‐diet‐interactions in folate‐mediated one‐carbon metabolism modify colon cancer risk. Molecular nutrition & food research. 2013;57(4):721-734. [DOI:10.1002/mnfr.201200180]
62. Gong Z, Ambrosone CB, et al. Associations of dietary folate, Vitamins B6 and B12 and methionine intake with risk of breast cancer among African American and European American women. International journal of cancer. 2014;134(6):1422-1435. [DOI:10.1002/ijc.28466]
63. Bishop KS, Ferguson LR. The interaction between epigenetics, nutrition and the development of cancer. Nutrients. 2015;7(2):922-947. [DOI:10.3390/nu7020922]
64. Yousefinejad, A., et al., Effect of Genistein and L-Carnitine and Their Combination on Gene Expression of Hepatocyte HMG-COA Reductase and LDL Receptor in Experimental Nephrotic Syndrome. Iranian journal of public health, 2015; 44(10): 1339-1347.
65. He J, Pu Y, et al. Association between dietary intake of folate and MTHFR and MTR genotype with risk of breast cancer. Genet Mol Res. 2014;13(4):8925-8931. [DOI:10.4238/2014.October.31.7]
66. Weiwei Z, Liping C, et al. Association between dietary intake of folate, vitamin B6, B12 & MTHFR, MTR Genotype and breast cancer risk. Pakistan journal of medical sciences. 2014;30(1):106-110.
67. Melak D, Ferreccio C, et al. Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile. Toxicology and applied pharmacology. 2014;274(2):225-231. [DOI:10.1016/j.taap.2013.11.014]
68. Vieira MLdS, Fonseca FLA, et al. Supplementation with selenium can influence nausea, fatigue, physical, renal, and liver function of children and adolescents with cancer. Journal of medicinal food. 2015;18(1):109-117. [DOI:10.1089/jmf.2014.0030]
69. Takata Y, Shrubsole MJ, et al. Plasma folate concentrations and colorectal cancer risk: A case‐control study nested within the Shanghai Men\'s Health Study. International journal of cancer. 2014;135(9):2191-2198. [DOI:10.1002/ijc.28871]
70. Simonetta Friso and Sang-Woon Choi . Gene-Nutrient Interactions and DNA Methylation. J. Nutr. 2002; 132:2382S-2387S. Keum N, Giovannucci EL. Folic acid fortification and colorectal cancer risk. American journal of preventive medicine. 2014;46(3):S65-S72.
71. Jung AY, van Duijnhoven FJ, et al.| Dietary B vitamin and methionine intake and MTHFR C677T genotype on risk of colorectal tumours in patients with Lynch Syndrome: the GEOLynch Cohort Study. PDF hosted at the Radboud Repository of the Radboud University Nijmegen. 2014:1119-1129.
72. Giovannucci E. Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies. J Nutr 2004; 134, 2475S–2481S
73. Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004; 229(10):988-995. [DOI:10.1177/153537020422901002]
74. Webb PM, Ibiebele TI, et al. Folate and related micronutrients, folate-metabolising genes and risk of ovarian cancer. Eur J Clin Nutr. 2011;65(10):1133-1140. . [DOI:10.1038/ejcn.2011.99]
75. Aune D, Rosenblatt DAN, et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. The American journal of clinical nutrition. 2015;101(1):87-117. [DOI:10.3945/ajcn.113.067157]
76. Monteith GR. Prostate cancer cells alter the nature of their calcium influx to promote growth and acquire apoptotic resistance. Cancer Cell. 2014;26(1):1-2. [DOI:10.1016/j.ccr.2014.06.015]
77. Batai K, Murphy AB, et al. Abstract B16: Association of calcium and vitamin D intake and vitamin D receptor genotypes with prostate cancer in multiethnic samples. AACR; 2015;24(10 Suppl): 1158-1538. [DOI:10.1158/1538-7755.DISP14-B16]
78. Cornelia M. Ulrich. Nutrigenetics in Cancer Research - Folate Metabolism and Colorectal Cancer. J. Nutr. 2005; 135: 2698–2702. .
79. Fetahu IS, Höbaus J, et al. Calcium‐sensing receptor silencing in colorectal cancer is

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به مجله پژوهش سلامت می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2018 All Rights Reserved | Health Research Journal

Designed & Developed by : Yektaweb