Volume 6, Issue 1 (12-2020)                   hrjbaq 2020, 6(1): 42-54 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbanian B, Saberi Y, Babalooyan S. The Effect of Eight Weeks of High Intensity Interval Training on Plasma Glucagon, GLP-1 and Lipid Indicators in Non-Alcoholic Fatty Liver Patients. hrjbaq. 2020; 6 (1) :42-54
URL: http://hrjbaq.ir/article-1-475-en.html
Department of Exercise Sciences, Faculty of Education and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran , (b.gorbanian@gmail.com)
Abstract:   (712 Views)

Introduction: Non-alcoholic fatty liver disease is a chronic disease that is associated with the accumulation of fats in the liver. Regular exercise can be considered as an effective strategy in the treatment of non-alcoholic fatty liver disease. The aim of this study was to evaluate the effect of eight weeks of intense interval training on plasma levels of glucagon, GLP-1 and blood lipid indices in patients with non-alcoholic fatty liver.
Materials and Methods: The present study was a quasi-experimental study in which the study population was women with non-alcoholic fatty liver disease, 25 of whom were randomly divided into two groups of exercise (n = 13) and control (n = 12). Were. Intense intermittent training protocol was performed for 8 weeks and four sessions per week, each session lasting 60 minutes. Blood samples were taken from the brachial vein in pre-test and post-test conditions. Statistical analysis of data was performed using analysis of covariance and paired and independent t-test by spss21 software at a significant level of p <0.05.
Results: After eight weeks of intense interval training, the glucagon, GLP-1 and HDL plasma levels in the training group increased significantly compared to the control group (P<0.05). Also, LDL, TG, TC, insulin resistance index and body fat percentage in the exercise group had a significant decrease compared to the control group (P<0.05).
Conclusion: According to the findings of this study, intense interval training can be suggested as a treatment and prevention strategy for non-alcoholic fatty liver disease.

Author Contribution: All authors contributed equally in this work.
Conflict of interest/ Funding/ Supports: The authors declare that have no conflict of interest / Funding/ supports in this study.
Ethical Contribution: All ethical concerns respected in this study. It was approved ethical committee of Tabriz University of Medical Sciences (code number: IR.TABRIZ.RC.1399.472).
Applicable Remarks: Use of intense interval training as a non-pharmacological treatment strategy for prevention and improvement of non-alcoholic fatty liver disease.

Full-Text [PDF 2401 kb]   (127 Downloads)    
Type of Study: Research | Subject: Special
Received: 2020/10/13 | Revised: 2021/03/15 | Accepted: 2020/12/22 | ePublished ahead of print: 2021/01/18 | Published: 2021/02/20

1. Kang H, Greenson JK, Omo JT, Chao C, Peterman D, Anderson L, et al. Metabolic syndrome is associated with greater histologic severity, higher carbohydrate, and lower fat diet in patients with NAFLD. Am J Gastroenterol. 2006;101(10):2247-53. DOI: 10.1111/j.1572-0241.2006.00719.x PMID: 17032189
2. Kopec KL, Burns D. Nonalcoholic fatty liver disease: a review of the spectrum of disease, diagnosis, and therapy. Nutr Clin Pract. 2011;26(5):565-76. DOI: 10.1177/0884533611419668 PMID: 21947639
3. Orangi E, Ostad Rahimi A, Mahdavi R, Somi M, Tarzemani M. Oxidative Stress-related Parameters and Antioxidant Status in Non-alcoholic Fatty Liver Disease Patients. Iranian Journal of Endocrinology and Metabolism. 2011;12(5):493-9.
4. Patton HM, Sirlin C, Behling C, Middleton M, Schwimmer JB, Lavine JE. Pediatric nonalcoholic fatty liver disease: a critical appraisal of current data and implications for future research. J Pediatr Gastroenterol Nutr. 2006;43(4):413-27. DOI: 10.1097/01.mpg.0000239995.58388.56 PMID: 17033514
5. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005-23. DOI: 10.1002/hep.25762 PMID: 22488764
6. Lee J, Hong SW, Rhee EJ, Lee WY. GLP-1 Receptor Agonist and Non-Alcoholic Fatty Liver Disease. Diabetes Metab J. 2012;36(4):262-7. DOI: 10.4093/dmj.2012.36.4.262 PMID: 22950055
7. MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51 Suppl 3:S434-42. DOI: 10.2337/diabetes.51.2007.s434 PMID: 12475787
8. Ahren B, Schmitz O. GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res. 2004;36(11-12):867-76. DOI: 10.1055/s-2004-826178 PMID: 15655721
9. Bourdel-Marchasson I, Schweizer A, Dejager S. Incretin therapies in the management of elderly patients with type 2 diabetes mellitus. Hosp Pract (1995). 2011;39(1):7-21. DOI: 10.3810/hp.2011.02.369 PMID: 21441754
10. Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology. 2006;43(1):173-81. DOI: 10.1002/hep.21006 PMID: 16374859
11. Pettus J, Reeds D, Cavaiola TS, Boeder S, Levin M, Tobin G, et al. Effect of a glucagon receptor antibody (REMD-477) in type 1 diabetes: A randomized controlled trial. Diabetes Obes Metab. 2018;20(5):1302-5. DOI: 10.1111/dom.13202 PMID: 29283470
12. Muller TD, Finan B, Clemmensen C, DiMarchi RD, Tschop MH. The New Biology and Pharmacology of Glucagon. Physiol Rev. 2017;97(2):721-66. DOI: 10.1152/physrev.00025.2016 PMID: 28275047
13. Galsgaard KD, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. Glucagon Receptor Signaling and Lipid Metabolism. Front Physiol. 2019;10:413. DOI: 10.3389/fphys.2019.00413 PMID: 31068828
14. Keating SE, Hackett DA, George J, Johnson NA. Exercise and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;57(1):157-66. DOI: 10.1016/j.jhep.2012.02.023 PMID: 22414768
15. Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes (Lond). 2008;32(4):684-91. DOI: 10.1038/sj.ijo.0803781 PMID: 18197184
16. Barzegarzadeh-Zarandi H, Dabidy-Roshan V. Changes in some liver enzymes and blood lipid level following interval and continuous regular aerobic training in old rats. Journal of Shahrekord Uuniversity of Medical Sciences. 2012;14.
17. Marcinko K, Sikkema SR, Samaan MC, Kemp BE, Fullerton MD, Steinberg GR. High intensity interval training improves liver and adipose tissue insulin sensitivity. Mol Metab. 2015;4(12):903-15. DOI: 10.1016/j.molmet.2015.09.006 PMID: 26909307
18. Xu X, Ying Z, Cai M, Xu Z, Li Y, Jiang SY, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2011;300(5):R1115-25. DOI: 10.1152/ajpregu.00806.2010 PMID: 21368268
19. Thomas C, Bishop D, Moore-Morris T, Mercier J. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis. Am J Physiol Endocrinol Metab. 2007;293(4):E916-22. DOI: 10.1152/ajpendo.00164.2007 PMID: 17609257
20. Barrera JG, Sandoval DA, D'Alessio DA, Seeley RJ. GLP-1 and energy balance: an integrated model of short-term and long-term control. Nat Rev Endocrinol. 2011;7(9):507-16. DOI: 10.1038/nrendo.2011.77 PMID: 21647189
21. Brown JC, Dryburgh JR, Ross SA, Dupre J. Identification and actions of gastric inhibitory polypeptide. Recent Prog Horm Res. 1975;31:487-532. DOI: 10.1016/b978-0-12-571131-9.50017-7 PMID: 128084
22. van der Heijden GJ, Wang ZJ, Chu ZD, Sauer PJ, Haymond MW, Rodriguez LM, et al. A 12-week aerobic exercise program reduces hepatic fat accumulation and insulin resistance in obese, Hispanic adolescents. Obesity (Silver Spring). 2010;18(2):384-90. DOI: 10.1038/oby.2009.274 PMID: 19696755
23. Wasserman DH, Lickley HL, Vranic M. Important role of glucagon during exercise in diabetic dogs. J Appl Physiol (1985). 1985;59(4):1272-81. DOI: 10.1152/jappl.1985.59.4.1272 PMID: 2865245
24. Tabibirad S, Abednatanzi H, Nikbakht H, Ghazalian F, Gholami M. Effects of aerobic training on dipeptidyl peptidase-4 and glucagon-like peptide-1 in obese women with type-2 diabetes. Iranian Journal of Diabetes and Lipid Disorders. 2019;18(5):275-81.
25. Martins C, Morgan LM, Bloom SR, Robertson MD. Effects of exercise on gut peptides, energy intake and appetite. J Endocrinol. 2007;193(2):251-8. DOI: 10.1677/JOE-06-0030 PMID: 17470516
26. Lee SS, Yoo JH, So YS. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus. J Phys Ther Sci. 2015;27(10):3063-8. DOI: 10.1589/jpts.27.3063 PMID: 26644644
27. Kullman EL, Kelly KR, Haus JM, Fealy CE, Scelsi AR, Pagadala MR, et al. Short-term aerobic exercise training improves gut peptide regulation in nonalcoholic fatty liver disease. J Appl Physiol (1985). 2016;120(10):1159-64. DOI: 10.1152/japplphysiol.00693.2015 PMID: 27032902
28. Martins C, Kulseng B, King NA, Holst JJ, Blundell JE. The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat. J Clin Endocrinol Metab. 2010;95(4):1609-16. DOI: 10.1210/jc.2009-2082 PMID: 20150577
29. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. 2011;17(11):1481-9. DOI: 10.1038/nm.2513 PMID: 22037645
30. Islam H, Townsend LK, McKie GL, Medeiros PJ, Gurd BJ, Hazell TJ. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. J Appl Physiol (1985). 2017;123(3):614-23. DOI: 10.1152/japplphysiol.00218.2017 PMID: 28684587
31. Eshghi SR, Fletcher K, Myette-Cote E, Durrer C, Gabr RQ, Little JP, et al. Glycemic and Metabolic Effects of Two Long Bouts of Moderate-Intensity Exercise in Men with Normal Glucose Tolerance or Type 2 Diabetes. Front Endocrinol (Lausanne). 2017;8:154. DOI: 10.3389/fendo.2017.00154 PMID: 28744255
32. Krishna MG, Coker RH, Lacy DB, Zinker BA, Halseth AE, Wasserman DH. Glucagon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. Am J Physiol Endocrinol Metab. 2000;279(3):E638-45. DOI: 10.1152/ajpendo.2000.279.3.E638 PMID: 10950833
33. Berglund ED, Lustig DG, Baheza RA, Hasenour CM, Lee-Young RS, Donahue EP, et al. Hepatic glucagon action is essential for exercise-induced reversal of mouse fatty liver. Diabetes. 2011;60(11):2720-9. DOI: 10.2337/db11-0455 PMID: 21885872
34. Griffiths M, Fiebig R, Gore M, Baker D, Esser K, Oscai L, et al. Exercise down-regulates hepatic lipogenic enzymes in food-deprived and refed rats. The Journal of nutrition. 1996;126(8):1959-71.
35. Hawley SA, Gadalla AE, Olsen GS, Hardie DG. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes. 2002;51(8):2420-5. DOI: 10.2337/diabetes.51.8.2420 PMID: 12145153
36. Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, et al. AMPK and PPARdelta agonists are exercise mimetics. Cell. 2008;134(3):405-15. DOI: 10.1016/j.cell.2008.06.051 PMID: 18674809
37. von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A, Aebersold R, et al. Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab. 2013;17(3):436-47. DOI: 10.1016/j.cmet.2013.01.014 PMID: 23416070
38. Perry RJ, Camporez JG, Kursawe R, Titchenell PM, Zhang D, Perry CJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745-58. DOI: 10.1016/j.cell.2015.01.012 PMID: 25662011
39. Schultz A, Mendonca LS, Aguila MB, Mandarim-de-Lacerda CA. Swimming training beneficial effects in a mice model of nonalcoholic fatty liver disease. Exp Toxicol Pathol. 2012;64(4):273-82. DOI: 10.1016/j.etp.2010.08.019 PMID: 20869214
40. Keating SE, Hackett DA, Parker HM, O'Connor HT, Gerofi JA, Sainsbury A, et al. Effect of aerobic exercise training dose on liver fat and visceral adiposity. J Hepatol. 2015;63(1):174-82. DOI: 10.1016/j.jhep.2015.02.022 PMID: 25863524
41. Slentz CA, Bateman LA, Willis LH, Shields AT, Tanner CJ, Piner LW, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Physiol Endocrinol Metab. 2011;301(5):E1033-9. DOI: 10.1152/ajpendo.00291.2011 PMID: 21846904
42. Kistler KD, Brunt EM, Clark JM, Diehl AM, Sallis JF, Schwimmer JB, et al. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. Am J Gastroenterol. 2011;106(3):460-8; quiz 9. DOI: 10.1038/ajg.2010.488 PMID: 21206486
43. Oliveira CP, de Lima Sanches P, de Abreu-Silva EO, Marcadenti A. Nutrition and Physical Activity in Nonalcoholic Fatty Liver Disease. J Diabetes Res. 2016;2016:4597246. DOI: 10.1155/2016/4597246 PMID: 26770987
44. Dumortier M, Brandou F, Perez-Martin A, Fedou C, Mercier J, Brun JF. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. Diabetes & Metabolism. 2003;29(5):509-18. DOI: 10.1016/s1262-3636(07)70065-4
45. Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781-9. DOI: 10.1007/s00125-008-1116-7 PMID: 18726585
46. Lavoie JM, Gauthier MS. Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise. Cell Mol Life Sci. 2006;63(12):1393-409. DOI: 10.1007/s00018-006-6600-y PMID: 1664914

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 CC BY-NC 4.0 | Health Research Journal

Designed & Developed by : Yektaweb