Volume 6, Issue 4 (9-2021)                   hrjbaq 2021, 6(4): 319-330 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdollahi S, Azarbayjani M A, Peeri M, Rahmati-Ahmadabad S. Comparison of the Effect of Phoenix Dactylifera Extract and Testosterone Enanthate with and without Resistance Training on the Expression of FOXO3α and Ctnnβ1 Genes and Apoptosis in Rat Gastrocnemius Muscle. hrjbaq. 2021; 6 (4) :319-330
URL: http://hrjbaq.ir/article-1-512-en.html
Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran. , (m_azarbayjani@iauctb.ac.ir)
Abstract:   (1232 Views)

Introduction: Using testosterone by athletes (especially in resistance training) to improve recovery and muscle growth has become common. But considering the side effects, it seems necessary to find alternative methods.
Materials and Methods: Thirty male rats were divided into six groups (n=5): exercise training, phoenix dactylifera extract, testosterone, phoenix dactylifera extract + exercise training, and testosterone+ exercise training. The exercise training groups performed a resistance training program (five sessions per week, each session, starting with 50% of a maximum repetition and increasing the intensity of training to disability) for four weeks. Phoenix dactylifera extract (5 days a week at a dose of 100 mg per kg body weight) was fed to rats in the phoenix dactylifera groups for four weeks. Rats in the testosterone groups also received testosterone enanthate for four weeks (five days a week at a dose of two milligrams per kilogram of body weight). Forty-eight hours after the last intervention, the animals were sacrificed and the gastrocnemius muscle were removed to measurements of the FOXO3α and beta-catenin 1 (Ctnnβ1) gene expressions, as well as, the ratio of apoptotic cells.
Results: Exercise decreased FOXO3α gene expression and the number of apoptotic cells in the gastrocnemius muscle (P=0.001). The combination of testosterone and phoenix dactylifera decreased the expression of FOXO3α (P=0.001) and Ctnnβ1 (P=0.004) genes as well as the number of apoptotic cells (P=0.001) in the gastrocnemius muscle. The rate of gastrocnemius muscle apoptotic cells in the interactive groups (exercise + testosterone and exercise + phoenix dactylifera) was lower than the independent groups (exercise, testosterone and phoenix dactylifera) (P=0.001).
Conclusion: The present study suggests the positive effect of phoenix dactylifera on the expression of FOXO3α and Ctnnβ1 genes, as well as, the amount of apoptotic cells in the gastrocnemius muscle. So, phoenix dactylifera may be considered as a natural alternative to testosterone.

Author Contribution: MAA was supervisor of the study, SRA and MP were advisor of the study, and SA was done the study and collected data.
Conflict of Interest: None
Funding/Supports: Central Tehran Branch, Islamic Azad University.
Ethical Considerations: all ethical concerns were considered. Also, tis study was confirmed by ethic committee of Marvdasht Branch, Islamic Azad University, Marvdasht, Iran (code number: IR.IAU.M.REC.1399.022).
Applicable Remarks: The present data suggesting phoenix dactylifera as a natural alternative to testosterone for endurance athletes.

Full-Text [PDF 2197 kb]   (185 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/06/5 | Revised: 2022/05/31 | Accepted: 2021/09/11 | ePublished ahead of print: 2021/09/14 | Published: 2021/12/13

1. Zarezadeh-Mehrizi A, Aminai M, Amiri-khorasani M. Effects of traditional and cluster resistance training on explosive power in soccer players. Iran J Health Phys Act. 2013;4(1):51-6.
2. Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep. 2012;11(4):209-16. DOI: 10.1249/JSR.0b013e31825dabb8 PMID: 22777332
3. Farzanegi P, Zamani M, Khalili A, Dehghani H, Fotohi R, Ghanbarpour MR, et al. Effects of upper- and lower-extremity resistance training on serum vascular endothelial growth factor, myostatin, endostatin and follistatin levels in sedentary male students. Science & Sports. 2021;36(2):139.e1-.e6. DOI: 10.1016/j.scispo.2020.02.013
4. Jangjo-Borazjani S, Dastgheib M, Kiyamarsi E, Jamshidi R, Rahmati-Ahmadabad S, Helalizadeh M, et al. Effects of resistance training and nigella sativa on type 2 diabetes: implications for metabolic markers, low-grade inflammation and liver enzyme production. Arch Physiol Biochem. 2021:1-9. DOI: 10.1080/13813455.2021.1886117 PMID: 33612031
5. Rosa Santos LD, Araujo SS, Vieira E, Estevam CDS, Santos JLD, Wichi RB, et al. Effects of 12 Weeks of Resistance Training on Cardiovascular Risk Factors in School Adolescents. Medicina (Kaunas). 2020;56(5). DOI: 10.3390/medicina56050220 PMID: 32384612
6. Moradi Kelardeh B, Rahmati-Ahmadabad S, Farzanegi P, Helalizadeh M, Azarbayjani MA. Effects of non-linear resistance training and curcumin supplementation on the liver biochemical markers levels and structure in older women with non-alcoholic fatty liver disease. J Bodyw Mov Ther. 2020;24(3):154-60. DOI: 10.1016/j.jbmt.2020.02.021 PMID: 32825982
7. Pronsato L, Boland R, Milanesi L. Testosterone exerts antiapoptotic effects against H2O2 in C2C12 skeletal muscle cells through the apoptotic intrinsic pathway. J Endocrinol. 2012;212(3):371-81. DOI: 10.1530/JOE-11-0234 PMID: 22219300
8. Pronsato L, Milanesi L. Effect of testosterone on the regulation of p53 and p66Shc during oxidative stress damage in C2C12 cells. Steroids. 2016;106:41-54. DOI: 10.1016/j.steroids.2015.12.007 PMID: 26703444
9. Kelly DM, Jones TH. Testosterone: a metabolic hormone in health and disease. J Endocrinol. 2013;217(3):R25-45. DOI: 10.1530/JOE-12-0455 PMID: 23378050
10. Mirdamadi A, Garakyaraghi M, Pourmoghaddas A, Bahmani A, Mahmoudi H, Gharipour M. Beneficial effects of testosterone therapy on functional capacity, cardiovascular parameters, and quality of life in patients with congestive heart failure. Biomed Res Int. 2014;2014:392432. DOI: 10.1155/2014/392432 PMID: 25110677
11. An Q, Gu YQ. Testosterone replacement therapy: Dilemmas and challenges in China and Asia. Asian J Androl. 2018;20(2):149-51. DOI: 10.4103/aja.aja_16_17 PMID: 29405166
12. Petering RC, Brooks NA. Testosterone therapy: review of clinical applications. Am Fam Physician. 2017;96(7):441-9.
13. Osterberg EC, Bernie AM, Ramasamy R. Risks of testosterone replacement therapy in men. Indian J Urol. 2014;30(1):2-7. DOI: 10.4103/0970-1591.124197 PMID: 24497673
14. Howatson G, McHugh MP, Hill JA, Brouner J, Jewell AP, van Someren KA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843-52. DOI: 10.1111/j.1600-0838.2009.01005.x PMID: 19883392
15. Bell PG, Walshe IH, Davison GW, Stevenson EJ, Howatson G. Recovery facilitation with Montmorency cherries following high-intensity, metabolically challenging exercise. Appl Physiol Nutr Metab. 2015;40(4):414-23. DOI: 10.1139/apnm-2014-0244 PMID: 25794236
16. Levers K, Dalton R, Galvan E, O'Connor A, Goodenough C, Simbo S, et al. Effects of powdered Montmorency tart cherry supplementation on acute endurance exercise performance in aerobically trained individuals. J Int Soc Sports Nutr. 2016;13:22. DOI: 10.1186/s12970-016-0133-z PMID: 27231439
17. Stefanescu R, Tero-Vescan A, Negroiu A, Aurica E, Vari CE. A Comprehensive Review of the Phytochemical, Pharmacological, and Toxicological Properties of Tribulus terrestris L. Biomolecules. 2020;10(5). DOI: 10.3390/biom10050752 PMID: 32408715
18. Shang S, Hua F, Hu ZW. The regulation of beta-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8(20):33972-89. DOI: 10.18632/oncotarget.15687 PMID: 28430641
19. Zhang Y, Wang X. Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. DOI: 10.1186/s13045-020-00990-3 PMID: 33276800
20. Kim K, Pang KM, Evans M, Hay ED. Overexpression of beta-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol Biol Cell. 2000;11(10):3509-23. DOI: 10.1091/mbc.11.10.3509 PMID: 11029052
21. Lysenko EA, Popov DV, Vepkhvadze TF, Lednev EM, Vinogradova OL. Effect of combined aerobic and strength exercises on the regulation of mitochondrial biogenesis and protein synthesis and degradation in human skeletal muscle. Human Physiology. 2017;42(6):634-44. DOI: 10.1134/s0362119716060104
22. Williamson DL, Raue U, Slivka DR, Trappe S. Resistance exercise, skeletal muscle FOXO3A, and 85-year-old women. J Gerontol A Biol Sci Med Sci. 2010;65(4):335-43. DOI: 10.1093/gerona/glq005 PMID: 20139145
23. Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N. Exercise-Induced Autophagy Suppresses Sarcopenia Through Akt/mTOR and Akt/FoxO3a Signal Pathways and AMPK-Mediated Mitochondrial Quality Control. Front Physiol. 2020;11:583478. DOI: 10.3389/fphys.2020.583478 PMID: 33224037
24. Chen D, Zhang Y, Zhang M, Chang J, Zeng Z, Kou X, et al. Exercise Attenuates Brain Aging by Rescuing Down-Regulated Wnt/beta-Catenin Signaling in Aged Rats. Front Aging Neurosci. 2020;12:105. DOI: 10.3389/fnagi.2020.00105 PMID: 32390823
25. Bayod S, Mennella I, Sanchez-Roige S, Lalanza JF, Escorihuela RM, Camins A, et al. Wnt pathway regulation by long-term moderate exercise in rat hippocampus. Brain Res. 2014;1543:38-48. DOI: 10.1016/j.brainres.2013.10.048 PMID: 24183784
26. Aschenbach WG, Ho RC, Sakamoto K, Fujii N, Li Y, Kim YB, et al. Regulation of dishevelled and beta-catenin in rat skeletal muscle: an alternative exercise-induced GSK-3beta signaling pathway. Am J Physiol Endocrinol Metab. 2006;291(1):E152-8. DOI: 10.1152/ajpendo.00180.2005 PMID: 16478782
27. Ghanbari-Niaki A, Rahmati-Ahmadabad S. Effects of a fixed-intensity of endurance training and pistacia atlantica supplementation on ATP-binding cassette G4 expression. Chin Med. 2013;8(1):23. DOI: 10.1186/1749-8546-8-23 PMID: 24267473
28. Tayebi SM, Ghanbari-Niaki A, Saeidi A, Hackney AC. Exercise Training, Neuregulin 4 and Obesity. Ann Appl Sport Sci. 2017;5(2):1-2. DOI: 10.18869/acadpub.aassjournal.5.2.1 PMID: 30899900
29. Rahmati-Ahmadabad S, Azarbayjani M-A, Farzanegi P, Moradi L. High-intensity interval training has a greater effect on reverse cholesterol transport elements compared with moderate-intensity continuous training in obese male rats. European Journal of Preventive Cardiology. 2021;28(7):692-701. DOI: 10.1177/2047487319887828
30. Tahvilzadeh M, Hajimahmoodi M, Rahimi R. The Role of Date Palm (Phoenix dactylifera L) Pollen in Fertility: A Comprehensive Review of Current Evidence. J Evid Based Complementary Altern Med. 2016;21(4):320-4. DOI: 10.1177/2156587215609851 PMID: 26438718
31. Selmani C, Chabane D, Bouguedoura N. Ethnobotanical Survey of Phoenix Dactylifera L. Pollen Used for the Treatment of Infertility Problems in Algerian Oases. Afr J Tradit Complement Altern Med. 2017;14(3):175-86. DOI: 10.21010/ajtcam.v14i3.19 PMID: 28480429
32. Mehraban F, Jafari M, Toori MA, Sadeghi H, Joodi B, Mostafazade M, et al. Effects of date palm pollen (Phoenix dactylifera L.) and Astragalus ovinus on sperm parameters and sex hormones in adult male rats. Iran J Reproductive Med. 2014;12(10):705.
33. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. DOI: 10.1097/WOX.0b013e3182439613 PMID: 23268465
34. Shirvani H, Rahmati-Ahmadabad S, Broom DR, Mirnejad R. Eccentric resistance training and beta-hydroxy-beta-methylbutyrate free acid affects muscle PGC-1alpha expression and serum irisin, nesfatin-1 and resistin in rats. J Exp Biol. 2019;222(Pt 10). DOI: 10.1242/jeb.198424 PMID: 31085594
35. Jiheel M, Arrak J. Role of DPP (Phoenix dactylifera L.) extract on Ameliorating The incidence of hemoglobinoxidation induced by sodium nitrite. Kufa J Veterinary Med Sci. 2015;6(2).
36. Chodari L, Mohammadi M, Ghorbanzadeh V, Dariushnejad H, Mohaddes G. Testosterone and Voluntary Exercise Promote Angiogenesis in Hearts of Rats with Diabetes by Enhancing Expression of VEGF-A and SDF-1a. Can J Diabetes. 2016;40(5):436-41. DOI: 10.1016/j.jcjd.2016.03.004 PMID: 27444229
37. Szondy Z, Sarang Z, Kiss B, Garabuczi E, Koroskenyi K. Anti-inflammatory Mechanisms Triggered by Apoptotic Cells during Their Clearance. Front Immunol. 2017;8:909. DOI: 10.3389/fimmu.2017.00909 PMID: 28824635
38. Wang F, Wang Q, Zhu M, Sun Q. Foxo3a aggravates inflammation and induces apoptosis in IL-1-treated rabbit chondrocytes via positively regulating tenascin-c. Folia Histochem Cytobiol. 2020;58(1):1-8. DOI: 10.5603/FHC.a2019.0022 PMID: 32003441
39. Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene. 2008;27(16):2312-9. DOI: 10.1038/onc.2008.24 PMID: 18391973
40. Farhan M, Wang H, Gaur U, Little PJ, Xu J, Zheng W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int J Biol Sci. 2017;13(7):815-27. DOI: 10.7150/ijbs.20052 PMID: 28808415
41. El Abed H, Chakroun M, Abdelkafi-Koubaa Z, Drira N, Marrakchi N, Mejdoub H, et al. Antioxidant, Anti-Inflammatory, and Antitumoral Effects of Aqueous Ethanolic Extract from Phoenix dactylifera L. Parthenocarpic Dates. Biomed Res Int. 2018;2018:1542602. DOI: 10.1155/2018/1542602 PMID: 30175115
42. Al Alawi R, Alhamdani MSS, Hoheisel JD, Baqi Y. Antifibrotic and tumor microenvironment modulating effect of date palm fruit (Phoenix dactylifera L.) extracts in pancreatic cancer. Biomed Pharmacother. 2020;121:109522. DOI: 10.1016/j.biopha.2019.109522 PMID: 31675539
43. Bentrad N, Hamida-Ferhat A. Date palm fruit (Phoenix dactylifera): Nutritional values and potential benefits on health. 2020:239-55. DOI: 10.1016/b978-0-12-818649-7.00022-9
44. A. Assirey E, M. Wagih H, N. Mahran H. Phoenix dactylifera L. Extract Diminished Apoptotic Effect in Cirrhotic Liver of a Rat Model. International Journal of Pharmacology. 2018;15(1):92-101. DOI: 10.3923/ijp.2019.92.101
45. Roshankhah S, Abdolmaleki A, Salahshoor MR. Anti-inflammatory, anti-apoptotic, and antioxidant actions of Middle Eastern Phoenix dactylifera extract on mercury-induced hepatotoxicity in vivo. Mol Biol Rep. 2020;47(8):6053-65. DOI: 10.1007/s11033-020-05680-4 PMID: 32737827
46. Mirza MB, Elkady AI, Al-Attar AM, Syed FQ, Mohammed FA, Hakeem KR. Induction of apoptosis and cell cycle arrest by ethyl acetate fraction of Phoenix dactylifera L. (Ajwa dates) in prostate cancer cells. J Ethnopharmacol. 2018;218:35-44. DOI: 10.1016/j.jep.2018.02.030 PMID: 29476962

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Health Research Journal

Designed & Developed by : Yektaweb