دوره 7، شماره 1 - ( 9-1400 )                   جلد 7 شماره 1 صفحات 86-75 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari M, Ataee R A, Mahabadi M. Changes in Receptor Binding Domain of the Covid-19 during Pandemic; a Review Study. hrjbaq. 2021; 7 (1) :75-86
URL: http://hrjbaq.ir/article-1-540-fa.html
جعفری مهدی، عطایی رمضانعلی، مه آبادی مصطفی. تغییرات جهشی ویروس کرونا در جایگاه RBD در شرایط همه‌گیری جهانی، یک مطالعه مروری. مجله پژوهش سلامت. 1400; 7 (1) :86-75

URL: http://hrjbaq.ir/article-1-540-fa.html


گروه میکروب شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی بقیه الله، تهران، ایران ، (mostafa.m1@gmail.com)
چکیده:   (1584 مشاهده)
تعداد جهش‌های اتفاق افتاده در عامل بیماری Covid-19 مکانیسم‌های درمان و پیشگیری را با مشکل مواجهه نموده است. بنابراین تعیین ماهیت و علل جهش‌های ایجادشده و پیش‌بینی جهش‌های احتمالی آینده از اولویت‌های تحقیقاتی بشمار می‌روند. ازاین‌رو، هدف این مقاله مروری بررسی یافته‌های علمی منتشرشده در خصوص جهش‌های ژنوم S به‌ویژه در ناحیه RBD و پیش‌بینی جهش‌های احتمالی آینده بود. نتایج بررسی ما نشان داد که عامل کووید 19 ویروسی تک‌رشته‌ای از خانواده کرونا ویریده دارای RNA تک‌رشته‌ای با طول ژنوم حدود bp ۲۹۸۸۱ است (GenBank no MN908947). ژنوم این ویروس ۹۸۶۰ اسیدآمینه را رمز می‌کند که شامل قطعات ژنی، پروتئین‌های ساختاری و غیر ساختاری است. ژن‌های S، E، M و N وظیفه رمز کردن پروتئین‌های ساختاری را بر عهده‌دارند و پروتئین‌های غیر ساختاری، شامل nsp و ORF می‌باشند. ظهور این بیماری باعث اتخاذ استراتژی‌های نو برای تشخیص و درمان و تولید واکسن شد. عدم موفقیت روش‌های مدیریت درمان بیماری به دلیل وقوع جهش‌های متعدد در ژنوم Covid-19 بوده است. بیشترین جهش‌ها در پروتئین S ویروس گزارش‌شده است. در گلیکوپروتیین S جایگاهی به نام Receptor-Binding Domain (RBD) وجود دارد که از طریق آن ویروس به گیرنده خود متصل می‌شود. تغییرات در این ناحیه مسئولیت اصلی اتصال به گیرنده (ACE2) Angiotensin-converting enzyme 2 را به عهده دارد. درنتیجه نقش اساسی در ایجاد واریانت های جدید را به خود اختصاص داده و عامل اصلی در انتشار ویروس است. شناخت جهش‌های ثبت‌شده در این قسمت از ویروس اثرات زیادی بر دانش ما داشته است. علاوه بر آن، با انجام آنالیز این جهش‌ها احتمالاً بتوان تغییرات ژنومی آینده ویروس را پیش‌بینی کرد.
متن کامل [PDF 2334 kb]   (216 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: عمومى
دریافت: 1400/7/14 | ویرایش نهایی: 1400/12/22 | پذیرش: 1400/10/12 | انتشار الکترونیک پیش از انتشار نهایی: 1400/11/3 | انتشار: 1400/12/18

فهرست منابع
1. Malik YA. Properties of Coronavirus and SARS-CoV-2. The Malaysian journal of pathology. 2020;42(1):3-11.
2. Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol. 2012;86(7):3995-4008. DOI: 10.1128/JVI.06540-11 PMID: 22278237
3. Payne S. Family Coronaviridae. Viruses. 2017:149-58. DOI: 10.1016/b978-0-12-803109-4.00017-9
4. Thomas S. The Structure of the Membrane Protein of SARS-CoV-2 Resembles the Sugar Transporter SemiSWEET. Pathog Immun. 2020;5(1):342-63. DOI: 10.20411/pai.v5i1.377 PMID: 33154981
5. White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol. 2008;43(3):189-219. DOI: 10.1080/10409230802058320 PMID: 18568847
6. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-9. DOI: 10.1038/s41401-020-0485-4 PMID: 32747721
7. Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res. 2020;178:104792. DOI: 10.1016/j.antiviral.2020.104792 PMID: 32272173
8. Hulswit RJ, de Haan CA, Bosch BJ. Coronavirus Spike Protein and Tropism Changes. Adv Virus Res. 2016;96:29-57. DOI: 10.1016/bs.aivir.2016.08.004 PMID: 27712627
9. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181(2):281-92 e6. DOI: 10.1016/j.cell.2020.02.058 PMID: 32155444
10. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-4. DOI: 10.1038/nature02145 PMID: 14647384
11. Ramsey IK, Spibey N, Jarrett O. The receptor binding site of feline leukemia virus surface glycoprotein is distinct from the site involved in virus neutralization. J Virol. 1998;72(4):3268-77. DOI: 10.1128/JVI.72.4.3268-3277.1998 PMID: 9525654
12. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11. DOI: 10.1186/s40779-020-00240-0 PMID: 32169119
13. Morawska L, Cao J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int. 2020;139:105730. DOI: 10.1016/j.envint.2020.105730 PMID: 32294574
14. Parums DV. Editorial: Revised World Health Organization (WHO) Terminology for Variants of Concern and Variants of Interest of SARS-CoV-2. Medical Science Monitor. 2021;27. DOI: 10.12659/msm.933622
15. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3-20. DOI: 10.1038/s41580-021-00418-x PMID: 34611326
16. Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):233. DOI: 10.1038/s41392-021-00653-w PMID: 34117216
17. Jia Z, Gong W. Will Mutations in the Spike Protein of SARS-CoV-2 Lead to the Failure of COVID-19 Vaccines? J Korean Med Sci. 2021;36(18):e124. DOI: 10.3346/jkms.2021.36.e124 PMID: 33975397
18. Hayashi T, Yaegashi N, Konishi I. Effect of RBD (Y453F) mutation in spike glycoprotein of SARS-CoV-2 on neutralizing IgG affinity. medRxiv. 2021. DOI: 10.1101/2020.11.27.401893
19. Assessment RR. Detection of new SARS-CoV-2 variants related to mink. Eur Cent Dis Prev Control. 2020.
20. Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS, et al. Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell. 2020;182(5):1295-310 e20. DOI: 10.1016/j.cell.2020.08.012 PMID: 32841599
21. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. MedRxiv. 2020. DOI: 10.1101/2020.12.21.20248640
22. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409-24. DOI: 10.1038/s41579-021-00573-0 PMID: 34075212
23. Tian F, Tong B, Sun L, Shi S, Zheng B, Wang Z, et al. N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife. 2021;10. DOI: 10.7554/eLife.69091 PMID: 34414884
24. Akkiz H. Implications of the Novel Mutations in the SARS-CoV-2 Genome for Transmission, Disease Severity, and the Vaccine Development. Front Med (Lausanne). 2021;8:636532. DOI: 10.3389/fmed.2021.636532 PMID: 34026780
25. Gan HH, Twaddle A, Marchand B, Gunsalus KC. Structural Modeling of the SARS-CoV-2 Spike/Human ACE2 Complex Interface can Identify High-Affinity Variants Associated with Increased Transmissibility. J Mol Biol. 2021;433(15):167051. DOI: 10.1016/j.jmb.2021.167051 PMID: 33992693
26. Nelson G, Buzko O, Spilman P, Niazi K, Rabizadeh S, Soon-Shiong P. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y. V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. BioRxiv. 2021. DOI: 10.1101/2021.01.13.426558
27. Ferrareze PAG, Franceschi VB, Mayer AM, Caldana GD, Zimerman RA, Thompson CE. E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol. 2021;93:104941. DOI: 10.1016/j.meegid.2021.104941 PMID: 34044192
28. Aleem AABAS, Slenker AK. Emerging Variants of SARS-CoV-2 And Novel Therapeutics Against Coronavirus (COVID-19). 2021.
29. Kimura I, Kosugi Y, Wu J, Yamasoba D, Butlertanaka EP, Tanaka YL, et al. SARS-CoV-2 Lambda variant exhibits higher infectivity and immune resistance. bioRxiv. 2021. DOI: 10.1101/2021.07.28.454085
30. Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, et al. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 2021;29(7):1124-36 e11. DOI: 10.1016/j.chom.2021.06.006 PMID: 34171266
31. Yadav PD, Sahay RR, Sapkal G, Nyayanit D, Shete AM, Deshpande G, et al. Comparable neutralization of SARS-CoV-2 Delta AY. 1 and Delta in individuals sera vaccinated with BBV152. bioRxiv. 2021. DOI: 10.1101/2021.07.30.454511
32. Celik I, Yadav R, Duzgun Z, Albogami S, El-Shehawi AM, Fatimawali, et al. Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation. Biology (Basel). 2021;10(9). DOI: 10.3390/biology10090880 PMID: 34571756
33. Jacob JJ, Vasudevan K, Pragasam AK, Gunasekaran K, Veeraraghavan B, Mutreja A. Evolutionary Tracking of SARS-CoV-2 Genetic Variants Highlights an Intricate Balance of Stabilizing and Destabilizing Mutations. mBio. 2021;12(4):e0118821. DOI: 10.1128/mBio.01188-21 PMID: 34281387
34. Roy B, Roy H. The Delta Plus variant of COVID-19: Will it be the worst nightmare in the SARS-CoV-2 pandemic? . Journal of Biomedical Sciences. 2021;8(1):1-2.
35. Scheepers C, Everatt J, Amoako DG, Mnguni A, Ismail A, Mahlangu B, et al. The continuous evolution of SARS-CoV-2 in South Africa: a new lineage with rapid accumulation of mutations of concern and global detection. medRxiv. 2021.
36. Brussow H. COVID-19: emergence and mutational diversification of SARS-CoV-2. Microb Biotechnol. 2021;14(3):756-68. DOI: 10.1111/1751-7915.13800 PMID: 33750009
37. Baric RS, Yount B, Hensley L, Peel SA, Chen W. Episodic evolution mediates interspecies transfer of a murine coronavirus. J Virol. 1997;71(3):1946-55. DOI: 10.1128/JVI.71.3.1946-1955.1997 PMID: 9032326
38. Yao H, Lu X, Chen Q, Xu K, Chen Y, Cheng M, et al. Patient-derived SARS-CoV-2 mutations impact viral replication dynamics and infectivity in vitro and with clinical implications in vivo. Cell Discov. 2020;6(1):76. DOI: 10.1038/s41421-020-00226-1 PMID: 33298872
39. Sironi M, Hasnain SE, Rosenthal B, Phan T, Luciani F, Shaw MA, et al. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infect Genet Evol. 2020;84:104384. DOI: 10.1016/j.meegid.2020.104384 PMID: 32473976
40. Wang R, Chen J, Gao K, Wei G-W. Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries. Genomics. 2021;113(4):2158-70.
41. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv. 2020. DOI: 10.1101/2020.06.12.148726

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله پژوهش سلامت می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2022 CC BY-NC 4.0 | Health Research Journal

Designed & Developed by : Yektaweb